

I am <mark>Yuxin (Kyle) Pan</mark>

This portfolio presents a selection of the projects that I delivered in the domain of robotics and mechatronics.

Self-Evolving Robotic Surface

As a recipient of **National Science Foundation Graduate Fellowship** on artificial intelligence (AI) for materials science research at *Duke University*, I worked on a robotic morphing surface with evolving inverse design.

Published on *Nature**.

* Bai Yun, Heling Wang, Yeguang Xue, <u>Yuxin Pan</u>, Jin-Tae Kim, Xinchen Ni, Tzu-Li Liu et al. "A dynamically reprogrammable metasurface with self-evolving shape morphing." Nature 609, 701–708 (2022)

2 AUV Autopilot Development

Enable autonomy for a revolutionary micro underwater vehicle (AUV).

At Advanced Navigation Pty Ltd, Australia. S Advanced

AUV Autopilot

- Kinematics and dynamics **modeling** of the autonomous underwater vehicle Hydrus
- Autopilot control scheme design with linear and optimal controller for vehicle stabilization and autonomous navigation, achieved average 2° tracking error

AUV Embedded System

- Conducted embedded programming of real-time autopilot module in C++ and FreeRTOS on Xilinx, with integration of IMU, brushless thrusters, and USBL acoustic positioning
- Performed ROS/Gazebo hardware-in-the-loop simulation with 3D kinematics and hydrodynamics

Embedded sensor integration

3 — Bricklaying Robot

State estimation/sensor fusion and numerical control programming for world's first fully-automated bricklaying robot.

At <mark>FastBrick Robotics</mark>, Australia.

 Developed and commissioned the world's first autonomous robotic bricklayer with the focus on layhead electromechanical control

Dynamic Stabilization of robotic layhead

- Designed and implemented sensor fusion (LIDAR, encoder, IMU) framework based on Kalman filter that achieved 0.002% positional error
- An open-source version of the multi-sensor Kalman filter fusion can be found here: <u>GitHub</u>

Control System Engineering

- Programmed and commissioned the computer numerical control on layhead module with 0% downtime
- Optimized hydraulic system dynamics for real-time robotic boom control in Beckhoff TwinCAT automation
- Executed advanced kinematic modeling and simulation for the robotic manipulator in V-REP
- Participated in Hadrian-X milestone as engineering operator

Layhead module

Robot commissioning

Deep Learning Based Multi-sensor Building Diagnostics Device

Designed and deployed a building diagnostics device.

Scholarship Intern at Arup Group. AR Sydney, Australia, 2018.

The **sensor suite** I developed including LIDAR, color/thermal camera, impact echo tester, and web interface

Real-world Validation

Identified 3 previously undiscovered defects, results verified by field engineer via destructive testing

Impact-echo calibration field on commercial building

Field engineer acquiring data with my developed system

Mechanical Design

Prototyped in Solidworks with CAD and thermal simulation

Full Stack Programming

Real-time cameras streaming, user feedback, and deep learning inference

Frontend with JS RESTful API, backend with Flask

Hosted on AWS cloud (AWS Certificate)

Research at Australia Centre for Field Robotics.

Scientific results published on <u>Australasian Conference on Robotics and Automation</u>*.

*Pan, Yuxin, and Ali Haydar Göktogan. "Quasi-Static Balance of a Bioinspired Robotic-Seagull Ornithopter Perching on a Wire." Australasian Conference on Robotics and Automation (2017)

Seagull Perching Simulation

Dynamics and Control

ANSYS Fluid Study

Prototyping of robotic seagull balancing

Hardware Architecture

Prototype

6 USV for Marine Science

Deployment of WAM-V and Kingfisher unmanned surface vessels (USV).

Supported by research scholarship at Australian Centre for Robotics.

- Developed the sonar control submodule on WAM-V via RS-232 interface
- Navigation and control real-time system programming in ROS

Autonomous Tracking UAV

7

Moving target tracking with autonomous quadcopter At Australia Centre for Robotics

- Developed fully customized autonomous vehicle with integration of 2DOF tracking gimbal
- Deployed high-level path planner for auto-landing

- Created robust computer vision based landing pad target tracking pipeline
- Achieved tracking error within 10% of glide slope

8

Heat Engine Mechanical Design and Manufacturing

A heat engine designed in Solidworks and machined from raw aluminium stock

At University of Pennsylvania, United States

CAD Design

Designed and modeled the heat engine from scratch in Solidworks

Manufacturing

Manufactured the engine from raw stock at university lab utilizing mill, lathe, and drill

Validation

Test speed reached 1100RPM

North Carolina School of Science and Mathematics

9 Outreach Robotic Material Workshop

- Lead organizer of a full-day workshop for high school students from underrepresented minorities
- Drew sponsorship from <u>Step Up to STEM</u> and <u>Duke</u> <u>Material Initiative</u> totalling \$3000

You can find me on:

<u>Personal Website</u>, <u>GitHub</u> , <u>LinkedIn</u>, <u>Youtube</u>